Eta-Ricci solitons on para-Kenmotsu manifolds
نویسندگان
چکیده
In the context of paracontact geometry, η-Ricci solitons are considered on manifolds satisfying certain curvature conditions: R(ξ,X) · S = 0, S · R(ξ,X) = 0, W2(ξ,X) · S = 0 and S · W2(ξ,X) = 0. We prove that on a para-Kenmotsu manifold (M,φ, ξ, η, g), the existence of an η-Ricci soliton implies that (M, g) is quasi-Einstein and if the Ricci curvature satisfies R(ξ,X) · S = 0, then (M, g) is Einstein. Conversely, we give a sufficient condition for the existence of an η-Ricci soliton on a para-Kenmotsu manifold. M.S.C. 2010: 53C21, 53C44, 53C25.
منابع مشابه
On three-dimensional $N(k)$-paracontact metric manifolds and Ricci solitons
The aim of this paper is to characterize $3$-dimensional $N(k)$-paracontact metric manifolds satisfying certain curvature conditions. We prove that a $3$-dimensional $N(k)$-paracontact metric manifold $M$ admits a Ricci soliton whose potential vector field is the Reeb vector field $xi$ if and only if the manifold is a paraSasaki-Einstein manifold. Several consequences of this result are discuss...
متن کاملOn $(epsilon)$ - Lorentzian para-Sasakian Manifolds
The object of this paper is to study $(epsilon)$-Lorentzian para-Sasakian manifolds. Some typical identities for the curvature tensor and the Ricci tensor of $(epsilon)$-Lorentzian para-Sasakian manifold are investigated. Further, we study globally $phi$-Ricci symmetric and weakly $phi$-Ricci symmetric $(epsilon)$-Lorentzian para-Sasakian manifolds and obtain interesting results.
متن کاملOn Φ-ricci Symmetric Kenmotsu Manifolds
The present paper deals with the study of φ-Ricci symmetric Kenmotsu manifolds. An example of a three-dimensional φ-Ricci symmetric Kenmotsu manifold is constructed for illustration. AMS Mathematics Subject Classification (2000): 53C25
متن کاملACTA UNIVERSITATIS APULENSIS No 19/2009 ON WEAKLY SYMMETRIC AND SPECIAL WEAKLY RICCI SYMMETRIC LORENTZIAN β-KENMOTSU MANIFOLDS
In this paper we study weakly symmetric and special weakly Ricci symmetric Lorentzian β-Kenmotsu manifolds and obtained some interesting results. 2000 Mathematics Subject Classification: 53C10, 53C15.
متن کاملOn Lorentzian two-Symmetric Manifolds of Dimension-four
‎We study curvature properties of four-dimensional Lorentzian manifolds with two-symmetry property‎. ‎We then consider Einstein-like metrics‎, ‎Ricci solitons and homogeneity over these spaces‎‎.
متن کامل